

LDC80 Scanner Cutting Head User Manual V1.0

Foreword

Dear Users:

Welcome to use the LDC80 autofocus swing cutting head products produced by Shenzhen Ospri Intelligent Technology Co., LTD. We are honored to have your confidence in our products.

In order to make you have an overall view of the product, convenient for your use, we specifically provide the user manual for you, including product characteristics, structural feature, technical feature, direction for use, maintenance, etc. It's an essential guide when you use this product.

Please read the user manual carefully before use. I'm sure it will be helpful for you to use this product. In addition, if you have any questions during use, please contact us, and we will serve you wholeheartedly.

Declaration:

The contents of User Manual are protected by the Copyright Law. Without the approval of Shenzhen Ospri Intelligent Technology Co., Ltd, any organization or individual shall not copy or tamper it by any means and forms.

In order to ensure your safety and the product works normally, please read the guide book carefully before using.

Contents

Chapter 1 General Introduction

1.1 Product Parameter	01
1.2 Cautions	01
Chapter 2 Structural Features	
2.1 Brief Description of Product Structure	02
2.2 Brief Description of Product Parts	03
2.3 Brief Description of Product Parts (Lens Size)	04
Chapter 3 Product Installation	
3.1 Cutting Head Installation.	05
3.2 Cutting Head Connection	06
3.2.1 Cooling Water Connection	06
3.2.2 Gas Connection.	07
3.3 Wiring Definition and Requirement	08
3.3.1 Aviation Plug Interface	08
3.3.2 Wiring Definition.	09
3.3.3 Drive IO Connection and Parameter Setting	11
3.4 Installation of QBH Fiber Laser Head.	15
3.5 Mobile APP Operation Instructions	18
3.5.1 Mobile APP Installation.	18
3.5.2 APP Software Connection.	19
3.5.3 Software Introduction.	20
3.5.4 Temperature Parameter Setting	21

Chapter 4 Product Debugging

4.1 Focusing Instruction	23
4.2 Centering Instruction.	25
4.3 Introduction to Touch Screen Operation Interface	26
4.4 Introduction to Touch Screen (External 7-inch Screen) Operation Interface	28
Chapter 5 Product Maintenance	
5.1 Maintenance and Replacement of Protective Lens	30
5.1.1 Disassembly of Collimation Protective Lens	30
5.1.2 Disassembly of Focus Protective Lens	31
5.2 Maintenance and Replacement of Collimation Lens	32
5.2.1 Disassembly of Collimation Lens	32
5.2.2 Cleaning of Collimation Lens	32
5.3 Maintenance and Replacement of Focus Lens	33
5.3.1 Disassembly of Focus Lens	33
5.3.2 Cleaning of Focus Lens.	33
5.4 Maintenance and Replacement of Cutting Protective Lens	34
5.4.1 Disassembly of Protective Lens.	34
5.4.2 Cleaning of Protective Lens.	35
5.5 Maintenance of Sensor.	36
5.5.1 Replacement of Nozzle and Ceramic Body	37
5.5.2 Cleaning of Ceramic Body	37
Chapter 6 Cutting Parameter Table	
6.1 6 kW Cutting Parameter Table	38

Chapter 1 General Introduction

1.1 Product Parameter

(1) Product parameters, as shown in Table 1.0.

1	
Name	Fiber laser scanner cutting head
Model	LDC80
Connector Type	QBH, QD, G5
Wavelength	1080±10nm
Rated Power	≤8KW
Focus Length	150mm/200mm
Collimation Length	100mm
Nozzle	Various models and specifications optional
Focus Range	-15mm~+15mm -30mm~+30mm
Centering Range	±1.5mm
Focus Speed	100mm/s
Gas Pressure	≤3Mpa
Wobbling Range	0-5mm
	4000
Wobble Speed	4000mm/s
Wobble Speed Weight	4000mm/s 11.5KG

Table 1.0

1.2 Cautions

- (1) Please wear special fiber laser safety goggles to ensure human safety when running laser cutting machine.
- (2) Precautions and standard operations should be taken to prevent burning of cutting head and laser nozzle due to the deviation of laser beams from central axis.
- (3) Keep the cutting head clean to prevent coolant, condensate or other foreign matters from entering the sensor, otherwise it may cause sensor failure.
- (4) When processing products with laser, use protective devices to prevent the laser beams from causing injury to human body.

Chapter 2 Structural Features

2.1 Brief Description of Product Structure

Brief description of product structure, as shown in Figure 1.1:

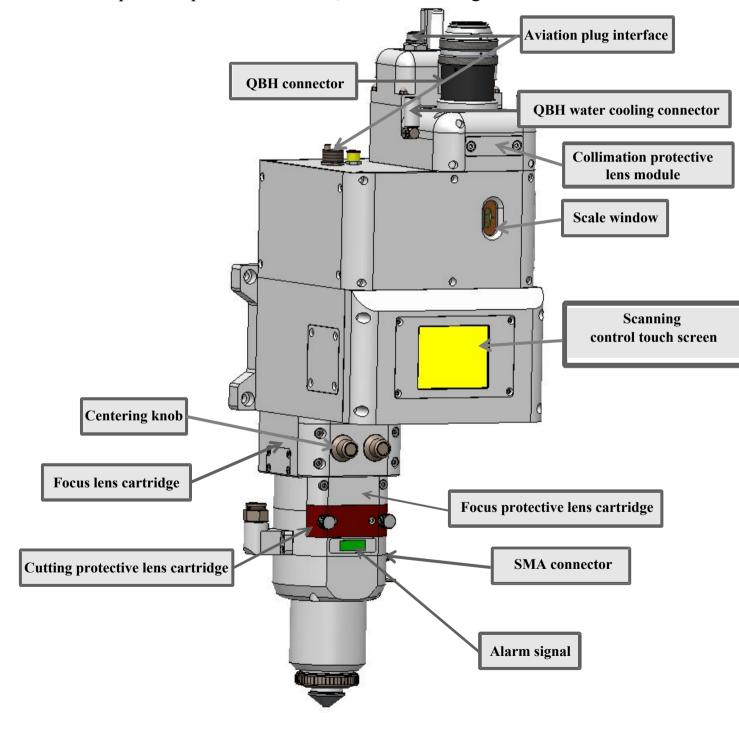
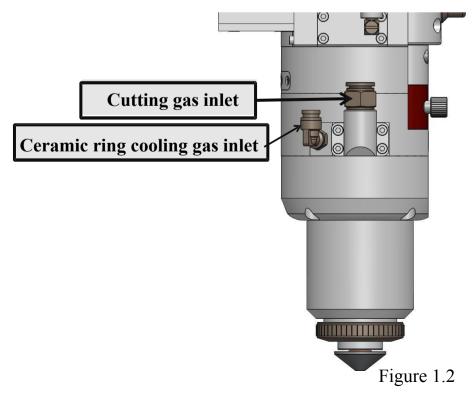
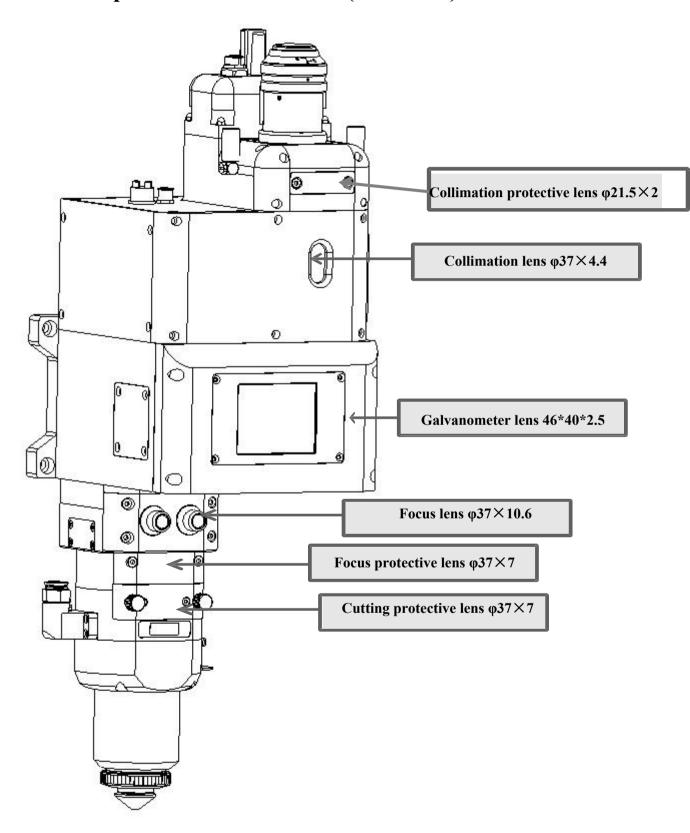



Figure 1.1


2.2 Brief Description of Product Parts

- 1. Water cooling connector: Cooling for QBH and cutting head.
- 2. Aviation plug interface: Signal output ports of motor cable, encoder cable and limit cable.
- 3. Collimation protective lens module: It can avoid the dust from entering into the cutting head for protecting the collimation lenses when pluggin or removing the fiber pigtail.
- 4. Scale window: Observation window for cutting focus, for reference only.
- 5. Focus lens cartridge: For replacing and maintaining the focusing lens easily, and centering the laser beam spot.
- 6. Focus protective lens cartridge: Protect the focus lens and facilitate fast replacement.
- 7. Cutting protective lens cartridge: Seal the cutting gas and protect the focus lens.
- 8. Cutting gas inlet: ϕ 10 mm gas connector for inputting cutting gas, as shown in Figure 1.2.
- 9. Cooling gas inlet: φ6 mm gas connector for inputting cooling gas for ceramic ring and nozzles, as shown in Figure 1.2.
- 10. Centering knob: Adjust the center of the light path so that the light beams pass through the center of the nozzle.
- 11.SMA connector: Connect to amplifier.
- 12. Alarm signal: It shows green in normal working state and red in case of alarm.
- 13. Scanning control touch screen: Control the scanning amplitude and speed.

2.3 Brief Description of Product Parts (Lens Size)

Chapter 3 Product Installation

3.1 Cutting Head Installation

Dimension drawing of cutting head (collimation F100/focus F200) is shown in Figure 1.3 below:

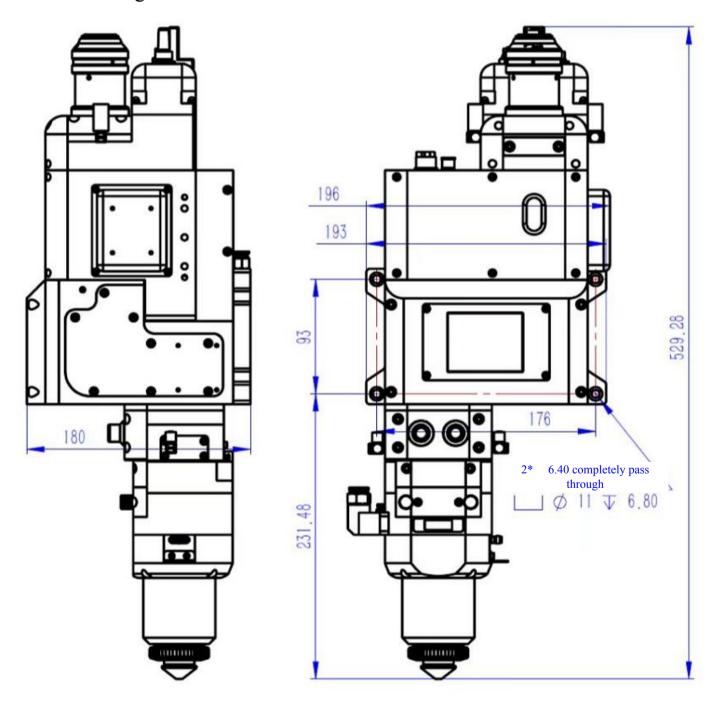


Figure 1.3

3.2 Cutting Head Connection

3.2.1 Cooling Water Connection

① Used for cooling QBH and cutting head, one inlet and one outlet, as shown in Figure 1.4 below:

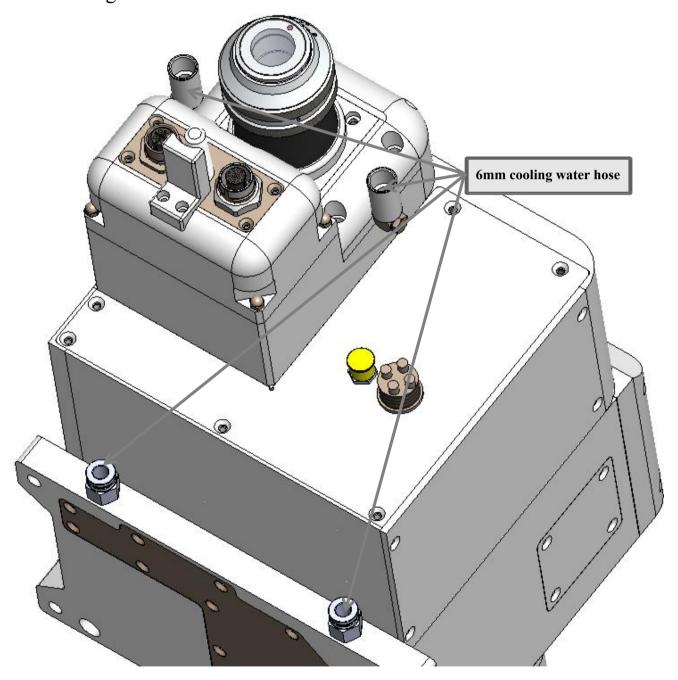


Figure 1.4

3.2.2 Gas Connection

(1) The inlet is connected to 10 mm gas hose, as shown in the Figure 1.5 below, used to connect with the cutting had, with the input pressure <3.0 Mpa.

Common gas: Oxygen, nitrogen and compressed air.

(2) The inlet is connected to 6 mm gas hose, as shown in the Figure 1.5 below to access to cooling gas at the input pressure <0.6 MPa.

Common gas: Compressed air.

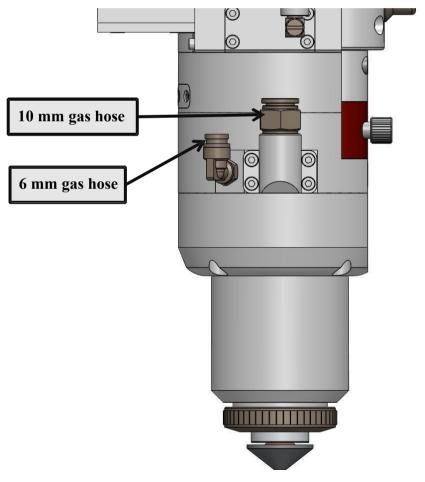


Figure 1.5

Attention: The gas entering the gas connection must be filtered and dried, otherwise it will contaminate the protective lens and cause damage to it.

3.3 Wiring Definition and Requirements

3.3.1 Aviation Plug Interface

(1) Ensure that the power supply is cut off before operating the aviation plug, otherwise the motor may be burnt. Pay attention to the position of the holes when connecting the power cable and signal cable to avoid damaging the pins, as shown in the Figure 1.6 below:

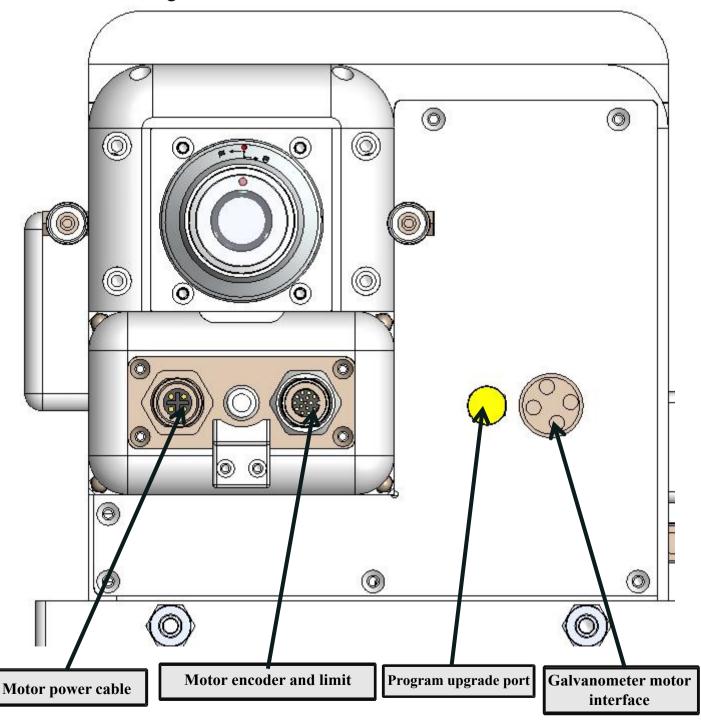
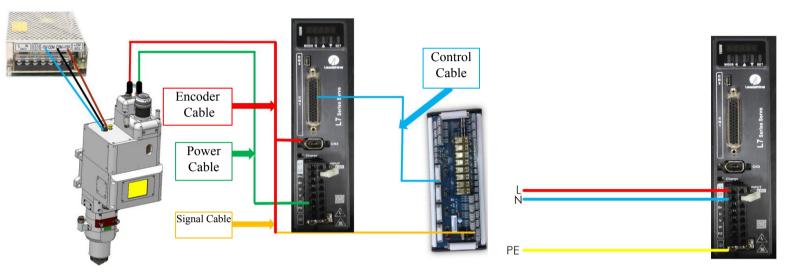



Figure 1.6

3.3.2 Wiring Definition

① Wiring diagram, as shown in Figure 1.7

② Power cable wiring of servo drive (single phase 220V), as shown in Figure 1.8

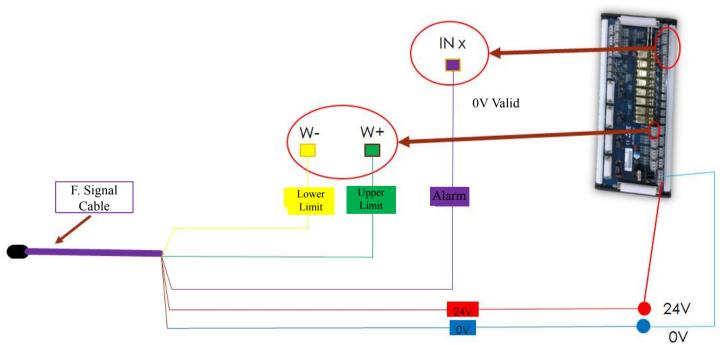
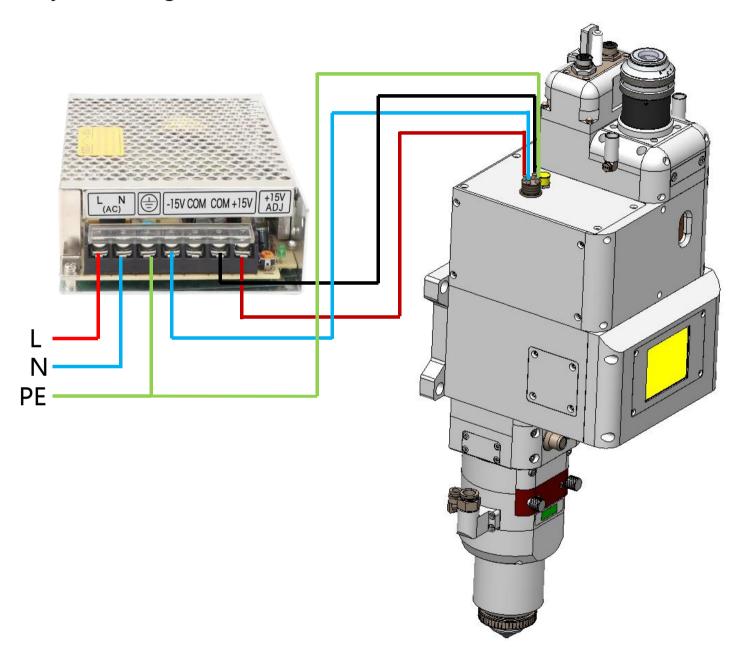


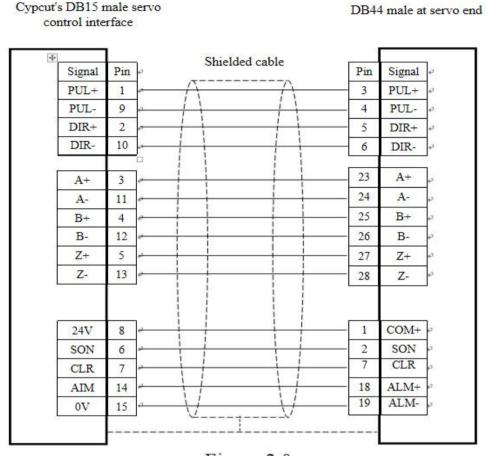
Figure 1.9

③ Signal cable wiring, as shown in Figure 1.9

4 Galvo Scanner Motor Wiring Connection

brown—— +15V blue—— -15V black—— COM yello and green——PE

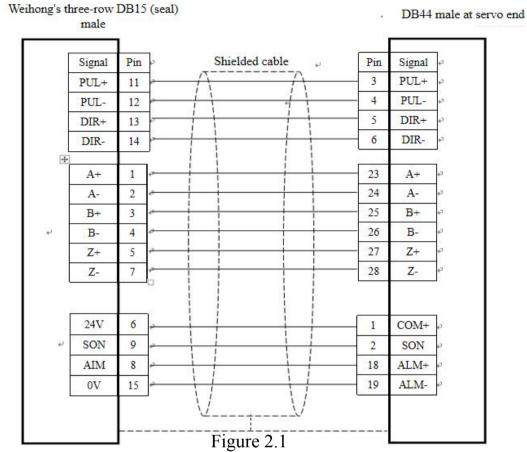



图2.0

3.3.3 IO Connection and Parameter Setting

Cypcut's DB15 male servo

1) Cypcut's open-loop parameter setting of Leadshine servo, as shown in Figure 2.0:



② Open-loop card parameter settings, as shown below:

S/N	VALUE	DESCRIPTION					
PA001	0	Position mode					
PA003	18	Rigidity class					
PA004	150	Inertia ratio					
PA006	0	Rotation direction					
PA007	3	Pulse train pattern					
PA008	10000	Number of pulses required per circle of motor rotation					
PA011	2500	Number of output pulses per circle of motor rotation					
PA400	3	Servo enabled					
PA410	1	Alarm output signal					

③ Weihong's open-loop IO wiring, as shown in Figure 2.1:

④ Open-loop card parameter settings, as shown below:

S/N	VALUE	DESCRIPTION			
PA001	0	Position mode			
PA003	18	Rigidity class			
PA004	150	Inertia ratio			
PA006	0	Rotation direction			
PA007	3	Pulse train pattern			
PA008	10000	Number of pulses required per circle of motor rotation			
PA011	2500	Number of output pulses per circle of motor rotation			
PA400	3	Servo enabled			
PA410	1	Alarm output signal			

③ Closed-loop card wiring definition (Cypcut)

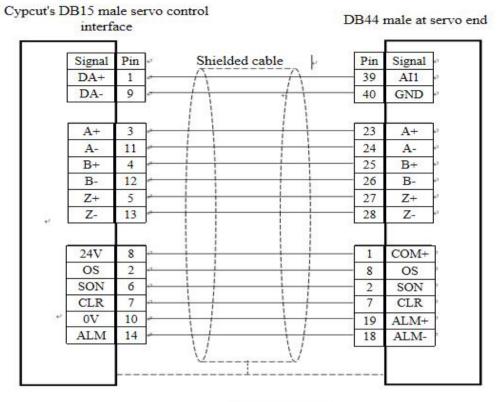


Figure 2.2

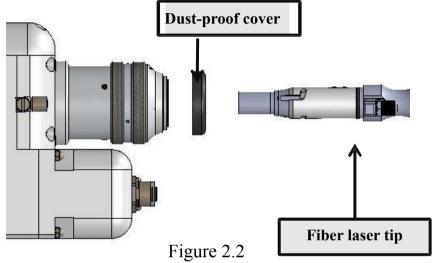
4 Closed-loop card drive parameters (Cypcut)

S/N	VALUE	DESCRIPTION					
PA001	1	Speed mode					
PA003	18	Rigidity class					
PA004	150	Inertio ratio					
PA008	10000	Number of pulses required per circle of motor rotation					
PA011	2500	Number of output pulses per circle of motor rotation					
PA012	1	Encoder direction					
PA300	0	Speed mode select					
PA303	1	Rotation direction of motor					
PA302	500	Rotation speed corresponding to 1V					
PA312	0	Acceleration time					
PA313	0	Deceleration time					
PA315	1	Zero-speed function selection					
PA400	3	Servo enabled					
PA402	91	Zero-speed clamp					

In case alarm displays on system but not on drive during jogging, please revise PA402 value to 11.

⑤ Fieldbus Servo Parameter, as shown below:

S/N	VALUE	DESCRIPTION					
PA001	9	Control mode					
PA003	18	Rigidity class					
PA004	150	Inertia ratio					
PA006	0	Motor rotating direction					
PA008	10000	Number of pulses required per circle of motor rotation					
PA011	2500	Number of output pulses per circle of motor rotation					
PA023	5	Slave station					
PA024	1	Slave station source					


Note: Use electronic gear ratio of computer if required, with the numerator of 131072 and denominator of 10000.

3.4 QBH Fiber Connection

① Put the cutting head horizontally, remove the white cover and static sticker, and then take out the dust-proof plug and dust-proof cover, as shown

in Figure 2.2:

② Cover the dust-proof cover which is in the white accessory box, onto the fiber laser tip, as shown in Figure 2.2:

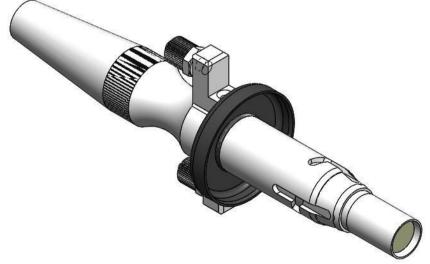
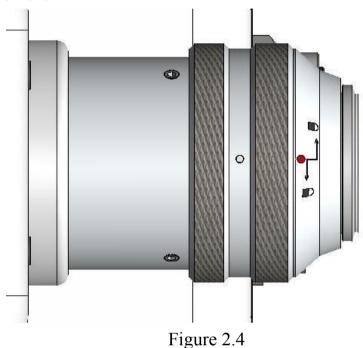



Figure 2.3

Attention: In case the fiber head is with original dust-proof gasket, users can choose whether install dust-proof cover or not according to actual demand.

③ Turn the QBH connector into the open state, that is, turn it to the limit position counterclockwise (a "thud" sound can be heard). Do not twist with great force, otherwise the internal structure of the QBH may be damaged, as shown in Figure 2.4:

(4) Align the red dot on the fiber head with the red dot on the QBH connector, and slowly insert the fiber head into the QBH connector, as shown in Figure 2.5:

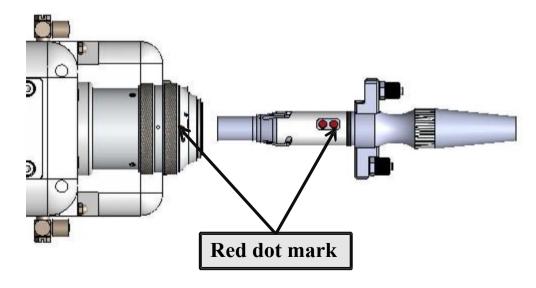


Figure 2.5

⑤ Turn the QBH connector to the locked state, that is, screw it toward the limit position clockwise (a "thud" sound can be heard). Then lift the swivel nut up and screw the nut clockwise again until the fiber tip is compressed tightly. (Clockwise: toward the direction of the "locked" icon). Do not twist with great force, otherwise the internal structure of the QBH may be damaged.

Attention: Wrap with masking tape after plugging fiber tip to better protect the laser head from dust.

3.5 Mobile APP Operation Instructions

- 3.5.1 Installation of Mobile Phone APP Software
- ① The downloading website is: http://disc.ospri.cn:5212/s/YAI3. After downloading, click "Install", as shown in Figure 2.6 below. Figure 2.7 below is the icon after installation. This APP can only be installed on Android phones at present.

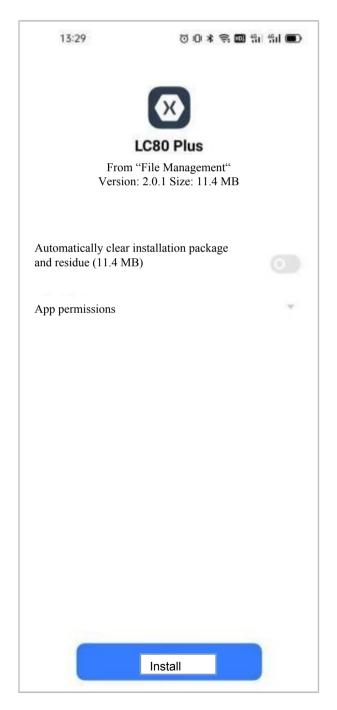


Figure 2.6

Figure 2.7
Icon displayed after installation

3.5.2 APP Software Connection

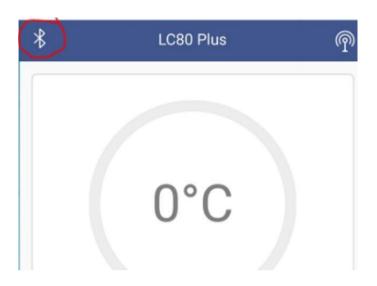


Figure 2.8

① Click the Bluetooth icon to open the Bluetooth connection, as shown in Figure 2.8.

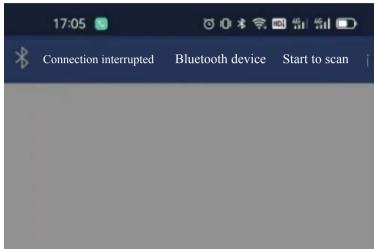


Figure 2.9

② Click "Start Scan" button. If nothing is displayed, click it for several times, as shown in Figure 2.9.

Figure 3.0

③ After scanning the device, select the device you need to connect and click the [Connect Device] button, and the mobile phone can communicate with the device in real time, as shown in Figure 2.9.

3.5.3 Software Introduction

① After running the LC80 Plus APP, the progress bar color on the main interface will change according to the actual temperature value monitored, as shown in Figure 3.1.

Green: The lens temperature is normal and can be used normally.

Yellow: The lens temperature is too high. Attention shall be paid to check if the lens is contaminated. Red: The lens is overtemperature and cannot continue to be used. The machine must be stopped to check the lens.

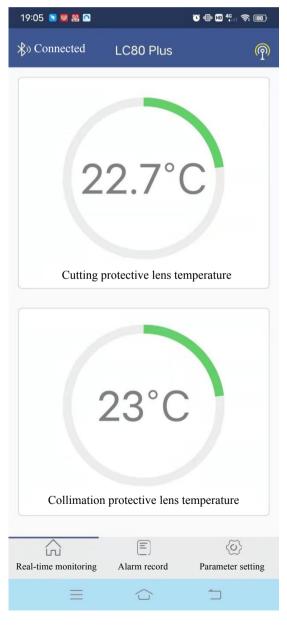


Figure 3.1

3.5.4 Temperature Parameter Setting

① You can set the temperature on the APP and set different temperature thresholds according to the actual applications. Click "Parameter Setting" and input the password of "85225225" to enter the temperature setting interface, as shown in Figure 3.2.

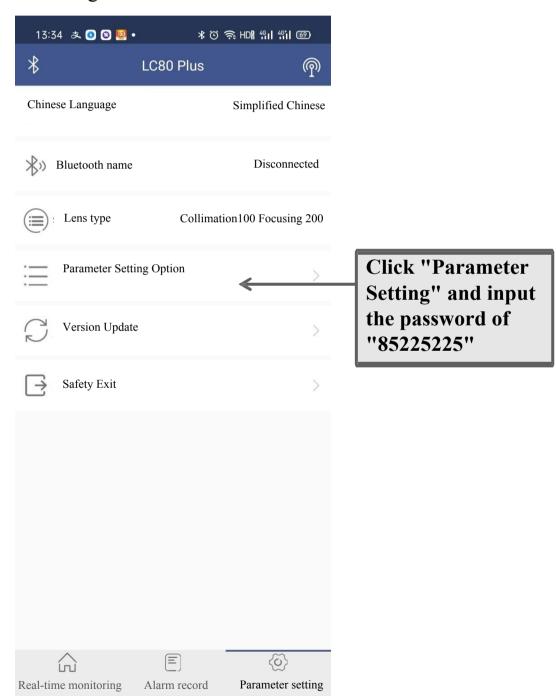
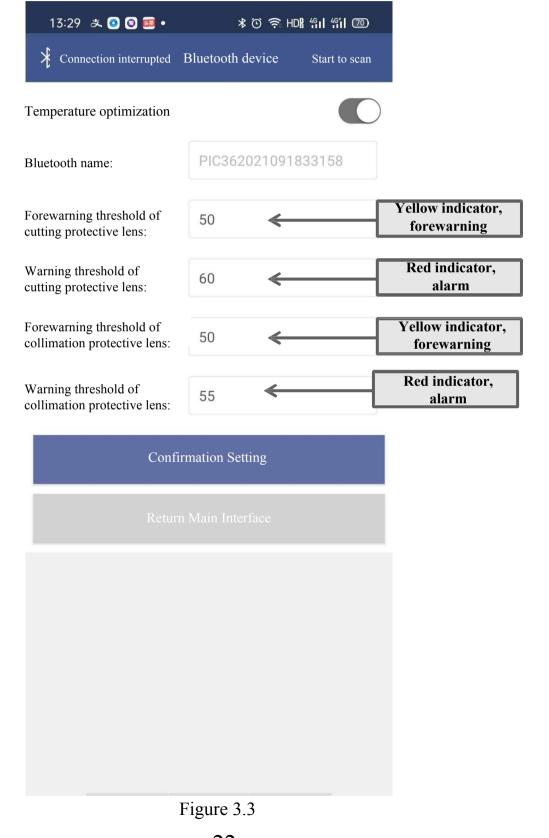



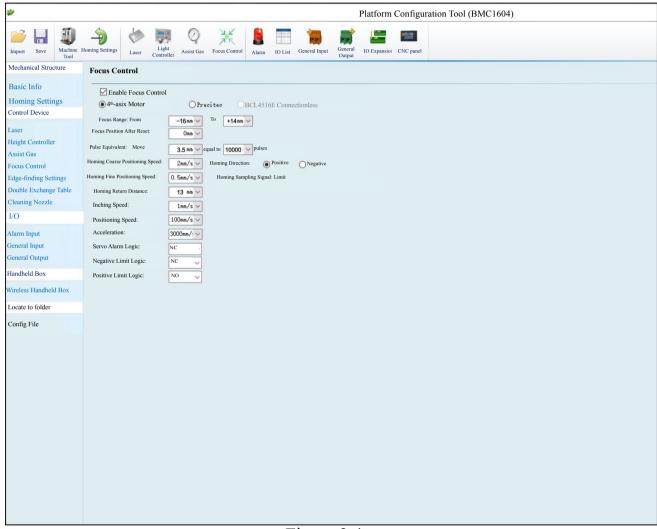
Figure 3.2

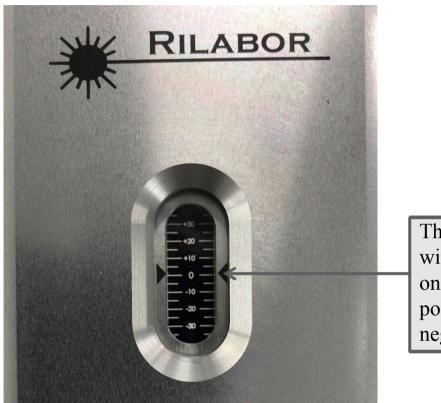
② Enter temperature settings interface to set the temperature according to the actual conditions. The forewarning value must be lower than the alarm value. After settings, click "Confirm", as shown in Figure 3.3:

Chapter 4 Product Debugging

4.1 Focusing Instruction

Focusing scale reset - First reset the 4th axis after powering on the machine tool to ensure the focus of the focusing scale is at the zero point, specifically as follows:




Figure 3.4

① Open the software configuration platform, set the focus retraction distance to 30mm (can be slightly adjusted according to the actual conditions) to ensure that the focus is at the zero point (taking Cypcut as an example), as shown in Figure 3.4.

Attention: The return distance can be slightly adjusted according to the actual cutting focus.

② After setting, open the cutting software and reset the focus to observe whether the focus moves, as shown in Figure 3.5:

The focus observation window is for reference only, and the scale is positive if goes up, or negative if goes down.

Figure 3.5

Attention: The scale numbers are for reference only, and the actual zero point shall be subject to the actual focus. If looking vertically when the pointer returns to the origin, it must coincide with the zero point.

4.2 Centering Instruction

① To achieve good joint-cutting effect, the laser beam must be kept in the center of the nozzle. When it deviates from the center of the nozzle, it needs to be adjusted through the beam centering module, as shown in Figure 3.6 below.

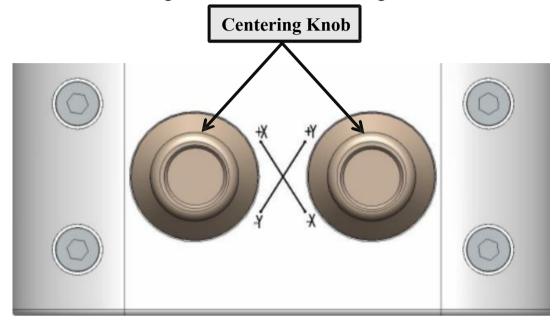
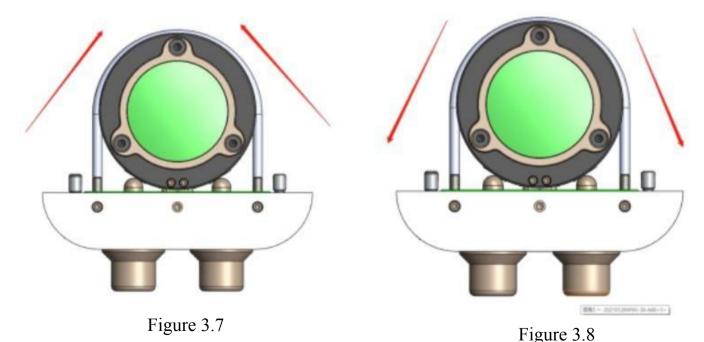



Figure 3.6

Attention: When the centering knob rotates clockwise, the center direction of the lens is shown in Figure 3.7. When the centering knob rotated counterclockwise, the center direction of the lens is shown in Figure 3.8.

4.3 Introduction to Touch Screen Operation Interface

1. Main interface (Chinese)

ON/OFF: Click to turn on/off the set spot pattern;

Power-off Save: Click to save the set spot parameters;

Spot Pattern: Click to adjust the welding pattern, including circle-shape, linear-shape, triangle-shape, and square-shape;

Spot Size: This field is used to set the spot output diameter, ranging from 0 to 5 mm.

Wobble Frequency: This field is used to set the wobble frequency of galvo motor, with the setting range of \leq 1200Hz.

X/Y Offset: This field is used to adjust the position of the focus center;

X/Y Zoom: This field is used to adjust the spot size;

Language: This field is used to adjust the language of the main interface. Currently, the product only supports three languages, i.e. Chinese, English and Korean.

4.3 Introduction to Touch Screen Operation Interface

1. Main interface (English)

4.4 Introduction to Touch Screen (External 7-inch Screen) Operation Interface

1 Main interface

ON/OFF: Click to turn on/off the set spot pattern;

Power-off Save: Click to save the set spot parameters;

Spot Pattern: Click to adjust the welding pattern, including circle-shape, linear-shape, triangle-shape, and square-shape;

Spot Size: This field is used to set the spot output diameter, ranging from 0 to 5 mm.

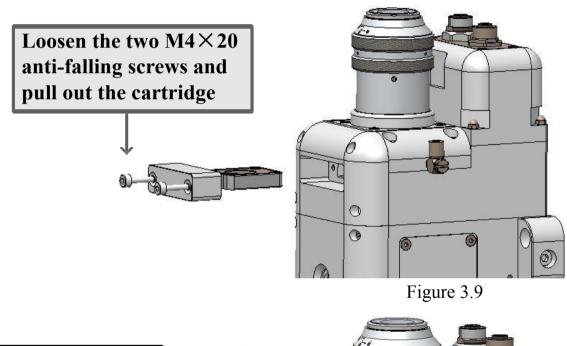
Wobble Frequency: This field is used to set the wobble frequency of galvo motor, with the setting range of \leq 1200 Hz.

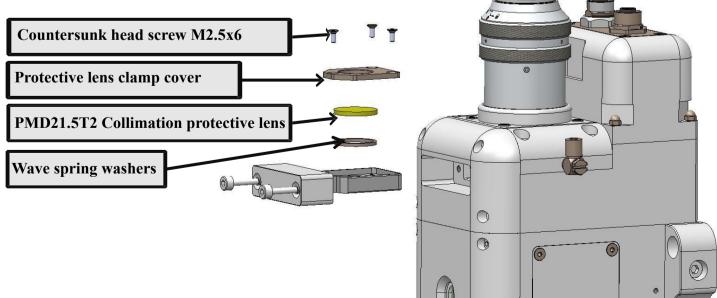
X/Y Offset: This field is used to adjust the position of the focus center;

X/Y Zoom: This field is used to adjust the spot size;

Language: This field is used to adjust the language of the main interface. Currently, the product only supports four languages, i.e. Chinese, English, Korean and Spanish;

Program Group: There are 8 groups of process parameters, which can be selected manually or switched through the external IO.




Chapter 5 Product Maintenance

5.1 Maintenance and Replacement of Protective Lens

In case poor welding performance occurs while cutting protective lens is normal, but burning points on the ceramic piece, the collimation protective lens or focus protective lens possibly is polluted or damaged. In this condition, please pull out the protective lens drawer to check the lens. Before checking, use a clean cloth dampened with alcohol to wipe the exterior clean.

5.1.1 Disassembly of collimation protective lens, as shown in Figures 3.9 and 4.0 below.

5.1.2 Disassembly of Focus Protective Lens

Loosen the two M4×16 hexagon socket anti-falling screws, pull out the protective lens cartridge, and replace the protective lens (PMD37T7), as shown

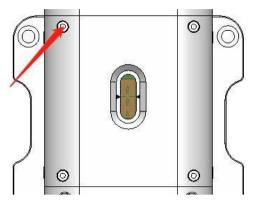

in Figures 4.1 and 4.2 below. Loosen the two M4×16 anti-falling screws and pull out the cartridge Figur e 4.1 Protective lens clamp ring **Protective lens PMD37T7** O sealing ring $37.6 \times 33 \times 2.1$

Figure 4.2

5.2 Maintenance and Replacement of Collimation Lens

5.2.1 Disassembly of Collimation Lens

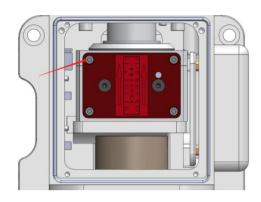


Figure 4.3

Figure 4.4

Loosen the four M3*16 screws in sequence as shown above, and then loosen the M2.5*8 screws, as shown in Figures 4.3 and 4.4; and pull out the collimation lens cartridge for maintenance. Please mind the proper direction of collimation lens when assembling it.

5.2.2 Cleaning of Collimation Lens

Figure 4.5

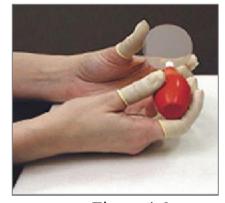


Figure 4.6

- ① Tools: Dust-free wiping swabs, isopropyl alcohol, dry and pure compressed air.
- ② Spray isopropyl alcohol onto the dust-free wiping swabs.
- ③ Gently pinch the both sides of the lens with the left thumb and index finger, and hold the wiping swabs with right hand to gently wipe both sides of the lens in a single direction from bottom to top or from left to right, as shown in Figure 4.5.
- 4 After wiping, blow the lens surface again with filled dry and pure compressed air to ensure that the cleaned lens surface is free of any foreign matter, as shown in Figure 4.6.
- ⑤ The cleansed lens must be installed into the cutting head's body as soon as possible or stored in other clean and sealed container.

5.3 Maintenance and Replacement of Focus Lens

5.3.1 Disassembly of Focus Lens

① As shown in Figure 4.7, loosen the four M4×16 hexagon socket anti-falling screws, and pull out the focus lens cartridge.

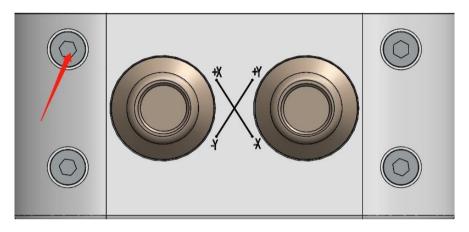


Figure 4.7

5.3.2 Cleaning of Collimation Lens

Figure 4.8

Figure 4.9

- ① Tools: Dust-free wiping swabs, isopropyl alcohol, dry and pure compressed air.
- ② Spray isopropyl alcohol onto the dust-free wiping swabs.
- ③ Gently pinch the both sides of the lens with the left thumb and index finger, and hold the wiping swabs with right hand to gently wipe both sides of the lens in a single direction from bottom to top or from left to right, as shown in Figure 4.8.
- ④ After wiping, blow the lens surface again with filled dry and pure compressed air to ensure that the cleaned lens surface is free of any foreign matter, as shown in Figure 4.9.
- ⑤ The cleansed lens must be installed into the cutting head's body as soon as possible or stored in other clean and sealed container.

5.4 Maintenance of Cutting Protective Lens

When the protective lens has impurities or foreign matters, they will absorb laser and heat up, resulting in damaged protective lens. Therefore, it is recommended to clean the protective lens once a week. Besides, the protective lens is a wearing part and shall be replaced if damaged.

5.4.1 Disassembly of Protective Lens

Loosen the thumb screws with hand, hold the screws and slowly pull out the focus protective lens assembly, and move it to a clean and dust-free environment, as shown in Figure 5.0. The detailed diagram of replacing lens is as shown in Figure 5.1.

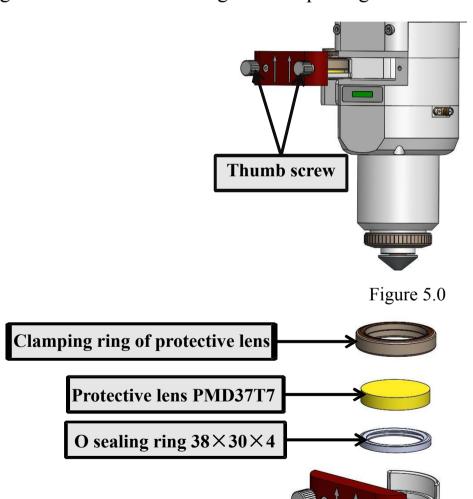


Figure 5.1

The assembly sequence is as shown in the figure above

5.4.2 Cleaning of Protective Lens

Figure 5.3

- ① Tools: Dust-free wiping swabs, isopropyl alcohol, dry and pure compressed air.
- ② Spray isopropyl alcohol onto the dust-free wiping swabs.
- ③ Gently pinch the both sides of the lens with the left thumb and index finger, and hold the wiping swabs with right hand to gently wipe both sides of the lens in a single direction from bottom to top or from left to right, as shown in Figure 5.2.
- 4 After wiping, blow the lens surface again with filled dry and pure compressed air to ensure that the cleaned lens surface is free of any foreign matter, as shown in Figure 5.3.
- ⑤ The cleansed lens must be installed into the cutting head's body as soon as possible or stored in other clean and sealed container.

Attention: When cleaning and replacing the protective lens, avoid the grease on hands or dust in the environment from contaminating the protective lens. The focus lens, collimation lens and cutting lens are generally forbidden to be disassembled. If lenses may be contaminated, users can first test the lenses with ceramic piece, or contact with our technical staff if necessary.

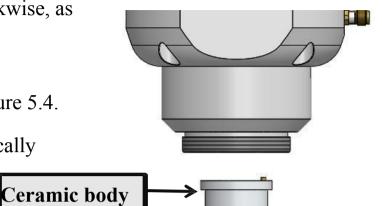
5.5 Maintenance of Sensor Parts

Ceramic body is a vulnerable part but can be replaced after damage. It shall be aligned with the two locating pins of the body in the process of installation. Otherwise, the ceramic body cannot be properly installed in place, thus causing operating failure of the sensor component. When locking the ceramic, tighten it with the locking nut. The different degree of tightness on locking nuts would directly affect the operating parameters of the sensor parts.

The laser nozzle is the sensitive element of the sensing part. It is a vulnerable part through the connection of the thread and the body. After working for a period of time, it is necessary to remove the bonded slag in time and replace it in time when the burning loss is serious.

After assembling the ceramics, the locking nut should be tightened and the evenly exposed ceramic is about 2-3mm.

The following cautions should be taken in the operation:


- ① Dry and clean auxiliary gas should be used when cutting. If there is water, oil and other impurities in the gas, the mutations may occur at working clearance, even causing work disorder of the sensor. It is suggested to use high purity oxygen and configure the gas dryer, oil-water separator and other devices.
- ② The sensor should be cleaned after being defaced, with clean and dry cotton wipers. Do not use liquid to clean the cutting head and ceramic, and then connect to the proper assembly after cleaning.
- ③ The ceramic body can be replaced after being damaged. Initialization of electrical system together with the amplifier should be conducted through a reset operation.
- 4 Prescriptive cutting nozzle should be used because the shape and size of it would directly affects the characteristics of the sensor.

5.5.1 Replacement of Nozzle and Ceramic Body

- ① Remove the nozzle counterclockwise, as shown in Figure 5.4.
- ② Remove the ceramic clamp ring counterclockwise, as shown in Figure 5.4.

③ Remove the ceramic body vertically downward, as shown in Figure 5.4

5.5.2 Cleaning of Ceramic Ring

Figure 5.4

- ① Take out the ceramic and clean it with anhydrous alcohol or isopropyl alcohol, as shown in Figure 5.5.
- ② Spray isopropyl alcohol onto the dust-free swab, remove the ceramic ring and clean it with the swab, as shown in Figure 5.6.
- ③ After wiping, blow the ceramic ring with filled dry and pure compressed air to clean it and ensure that the ceramic surface is clean and dry without moisture before installation.

Figure 5.5

Figure 5.6

Figure 5.7

Note: Cleanliness of ceramic surface is directly related to the operating performance of the following system. It is necessary to clean timely the dirt on the ceramic surface in order to ensure the working performance of the system.

Chapter 6 Cutting Process Parameter Table

6.1 6000 W Cutting Parameter Table

6000 W cutting parameter table, as shown in the figure below.

			Plat Thickness	Recommended		Air		Nozzle	÷		Piercing	Power
Model Material	Material	erial Gas	(mm)	Speed (m/ min)	Focus	Pressure (BAR)	Aperture	Layer	Height	Piercing Mode	Time (S)	(%)
		N2	1	35~50	0	14	2	S	0.6mm	General piercing	0.1	85
		N2	2	20~27	-1	14	2	S	0.6mm	General piercing	0.1	100
		N2	3	12~17	-2	14	2	S	0.6mm	General piercing	0.1	100
		N2	4	8~12	-3	14	3	S	0.6mm	General piercing	0.1	100
		O2	3	3.5~4.5	3	0.6	1.2	D	0.6mm	General piercing	0.2	45
		O2	4	3.0~4.2	3	0.6	1.2	D	0.6mm	General piercing	0.2	50
	Carbon	O2	6	2.5~32	3	0.7	1.2	D	0.6mm	General piercing	0.3	60
	Steel Q235	O2	8	2~2.6	5	0.7	1.2	D	0.8mm	General piercing	0.6	75
		O2	10	2~2.4	7	0.7	1.2 (general)	D	0.5mm	General piercing	0.6	100
		O2	12	1.8~2.1	9	0.7	1.2 (general)	D	0.5mm	General piercing	1	100
		O2	14	1.4~1.7	10	0.8	1.2 (general)	D	0.5mm	General piercing	1	100
LC80PLUS Cutting head		O2	16	1~1.4	12	0.8	1.4 (general)	D	0.5mm	General piercing	1.4	100
200 focal length		O2	20	0.8~1	13	1	1.6 (general)	D	1mm	General piercing	1.4	100
		O2	25	0.3~0.5	14	0.7	1.4 (general)	S	0.3mm	General piercing + Pre-piercing	2	100
		N2	1	30~45	0	13	3	D	0.8mm	General piercing	0.1	80
		N2	2	17~35	-1.2	13	3	D	0.8mm	General piercing	0.1	100
		N2	3	12~17	-2	13	3	S	0.8mm	General piercing	0.3	100
		N2	4	8~12	-3.5	15	3	S	0.6mm	General piercing	0.3	100
	Stainless	N2	6	5~8	-5	16	3	S	0.6mm	General piercing	0.4	100
	steel 304	N2	8	3.2~4	-5.8	16	4	S	0.3mm	General piercing	0.6	100
		N2	10	1.9~2.7	-6.5	16	4	S	0.3mm	General piercing	0.8	100
		N2	12	1.2~1.5	-7.5	16	5	S	0.3mm	General piercing	0.8	100
		N2	14	0.8~1.2	-9	16	5	S	0.3mm	General piercing	1	100
		N2	16	0.6~0.85	-10	16	5	S	0.3mm	General piercing	1.4	100

Shenzhen Ospri Intelligent Technology Co.,Ltd

Tel: 0755-85225225

Fax: 4008266163-19300

e-Mail: mj.chen@sz-osprey.com

Add: Room 1001, Building A, No.4 Factory, Baolong Zhizaoyuan,

New Energy 1st Road, Baolong Community, Longgang District,

Shenzhen